Skip to main content

Solar roads such as Colas’s Wattway could be the right way

Peter Harrop, chairman of independent research and consultancy IDTechEx, considers arguments in favour of solar roads. Nowadays a major trend is the move to off-grid clean energy created by “energy harvesting” to produce electricity where it is needed. This is more controllable and increasingly at lower cost than grid power or diesel gensets, cleaner and often less subject to interruption. It is taking new forms as revealed in the IDTechEx Research report, “High Power Energy Harvesting 2016-2026”.
May 10, 2016 Read time: 4 mins

Peter Harrop, chairman of independent research and consultancy IDTechEx, considers arguments in favour of solar roads.

Nowadays a major trend is the move to off-grid clean energy created by “energy harvesting” to produce electricity where it is needed. This is more controllable and increasingly at lower cost than grid power or diesel gensets, cleaner and often less subject to interruption. It is taking new forms as revealed in the 8424 IDTechEx Research report, “High Power Energy Harvesting 2016-2026”.

Installing photovoltaics in roads seems a daft idea at first. It sounds expensive and unlikely to work unless the surface is cleaned, free of snow and ice and in direct sunlight – all too infrequent in most places. Indeed, roads are constantly dug up by utilities, repairmen and others. How do you do that with sheets of glass?

Nevertheless, a closer look reveals that most of the problems are easily overcome and even at poor efficiency, that local electricity has viable uses. US start-up Solar Roadways® has a modular system of specially engineered solar panels that can be driven upon but also carry cables. They contain LED lights to create lines and signage without paint and heating elements to prevent snow and ice accumulation. Microprocessors let the panels communicate with each other, a central control station, and vehicles. The glass has a tractioned surface which is equivalent to asphalt. So far they can only support the weight of semi-trucks but eventually these panels will be available for highways, but first will come non-critical applications such as driveways and parking lots.

Solar Roadways has completed two funding contracts with the U.S. Department of Transportation, and has been awarded a third contract in November 2015. An Indiegogo Campaign took things further and the company says on its website new in 2016 that, “Our goal is to modernize the infrastructure with modular, intelligent panels, while producing clean renewable energy for homes and businesses. We’ll be able to charge electric vehicles with clean energy from the sun, first on our solar parking lots and when we have enough highway infrastructure, while driving”.

At IDTechEx we do not see solar roads replacing power stations: do that with a field full of solar panels not transmission and maintenance over long distances on roads. However, they could be excellent for dynamic (in-motion) charging of electric vehicles possibly coupled with roadside wind turbines or tethered multicopters providing airborne wind energy (AWE) in the new jargon.

The bike path that connects the Amsterdam suburbs of Krommenie and Wormerveer is popular: 2,000 cyclists ride its two lanes daily. Back in 2014, TNO made a 70 metre stretch into the world’s first public road with embedded solar panels. Costing around €3m ($3.6m) and funded mostly by the local authority, this road is made up of rows of crystalline silicon solar cells, encased within concrete and covered with a translucent layer of tempered glass. A non-adhesive finish and a tilt help the rain wash off dirt. The panels produced roughly 30% less energy than those fixed on to roofs but when the path is extended to 100 metres in 2016, it will produce enough kilowatts to power three households, they claim.

Sten de Wit of TNO predicted that up to 20% of the Netherlands’ 140,000km of road could potentially be adapted, helping to power anything from traffic lights to electric cars. Tests have seen the solar panels successfully carry the weight of vehicles such as tractors.

Not to be outdone, a subsidiary of the French construction giant Bouygues is joining in. Minister of ecology and energy, Ségolène Royal, announced the French government would pave 1,000km (621 miles) of road with photovoltaic panels in the next five years. The project aims to supply electricity to 5 million people – about 8% of France’s population.

The road photovoltaics are being produced by a French company called 184 Colas, which is calling the project Wattway.

The panels are composed of stacked photovoltaic cells that ensure resistance and tire grip. They do not require destruction of existing roadways: they can simply be added on to them. There are issues beyond cost and servicing pipes and so on beneath them. When their heating is on, animals will lie on them and be crushed by traffic. The heating will not cope with extreme cold or with deep snow or mud. To work at all the heating will have to be connected to the grid or too expensive, short-lived, batteries needing regular maintenance unless designs improve.

Solar roads have competition. The USA is funding research into roads that harvest movement to make electricity but IDTechEx considers moving parts in such an application to be potentially troublesome. All the same, although piezoelectric walkways have not proved commercial, Pavegen is having some modest success with electrodynamic ones.

For more information on companies in this article

Related Content

  • New EU-Russian highway connection
    February 18, 2013
    Among the forests and lakes of Finland, one of Europe's newest motorway links is being built as a Green highway linking Europe to Russia - Adrian Greeman reports The road eastwards from Finland's capital Helsinki, along the north coast of the Gulf of Finland, has not carried heavy traffic volumes, at least until recent times. Highway seven as it is designated locally, or E18 in European nomenclature, is partly motorway but in some sections still dual carriageway or even just a single lane each way, finishin
  • Photovoltaic finish to road noise pollution
    January 2, 2013
    Patrizia Bellucci from the Research and New Technologies Division of ANAS, in Rome introduces a sustainable approach to road noise abatement Traffic noise has been recognised by the World Health Organization as a major factor contributing to environmental pollution. Besides causing annoyance, it has significant negative health impacts on populations living close to road infrastructure. In 2002, to help counter this state of affairs, the European Parliament and Council adopted Directive 2002/49/EC relating t
  • Future-proofing construction & quarrying equipment sustainability
    February 16, 2023
    Sustainability is a huge topic across the construction and quarrying industry – not just in terms of what can be achieved tomorrow via carbon-free hydrogen fuel cells and hydrogen internal combustion engines of machine fleets, but today, through the use of smart technology to make jobsites more efficient and sustainable by getting work done right first time, every time
  • Electric Avenue for heavy machinery?
    February 6, 2018
    The future for electric drive machines looks healthy, and not just for on-road transport. As concerns grow worldwide over urban pollution levels as well as global warming, it seems that electric drive vehicles are being seen as one of the answers for the future. In the automotive sector, sales of electric vehicles are growing as manufacturers offer improved models that benefit from better range due to gains in battery technology as well as faster recharging and future potential from supercapacitors. These