Skip to main content

REBLOC advances the end game

Mathias Redlberger, chief executive of REBLOC Group, a global provider of precast concrete elements for vehicle restraint systems, explains the new Technical Specification CEN/TS 1317-7 for terminals.
By David Arminas May 13, 2025 Read time: 3 mins
The REBLOC TE 80XA_17.9, developed for the Bi-Directional use (BDT = Bi-Directional Terminal), also meets T110/1 requirements (image courtesy REBLOC)

With the introduction of the new Technical Specification CEN/TS 1317-7:2023, introduced by the European Committee for Standardisation (CEN) in 2023, advancement has been made in road safety standards. Replacing the former Pre-Standard ENV 1317-4:2001, it provides a clear and binding framework for the performance characterisation and test methods of terminals (TE) for safety barriers.

The former scope has now been split into two documents:

•    CEN/TS 1317-7:2023 – performance characterisation and test methods for terminals of safety barriers
•    CEN/TR 1317-10:2023 – assessment methods and design guidelines for transitions, terminal and crash cushion connection - transitions

As a result of this division, CEN/TS 1317-7 now explicitly focuses on the terminals of safety barriers. This new focus enables a more detailed assessment and classification of the performance of terminals, providing a more precise evaluation framework.

A key element of the new document is the definition of test methods, which specify the testing procedures. The test code (for example, TT1.3.110) specifies key test parameters. ‘TT’ stands for Test of Terminal, ‘1’ represents the approach (1-6), ‘3’ indicates the test vehicle mass of 1,500kg (1 = 900kg, 2 = 1,300kg, 3 = 1,500kg). The final number represents the impact speed in km/h.

In the new specification, the former performance classes (for example, P4) are now classified as restraint categories (for example, T110/1). Meanwhile, the location (such as, A) has been replaced by a direction category (for example, BDT = bi-directional terminal).

The definition of lateral displacement has also been clarified, specifying the maximum displacement of the terminal during an impact, both on the traffic side (S) and the departure side (T) of the installation. Additionally, the categories of terminals Z1, Z2, Z3 and Z4 have been newly defined to ensure that the vehicle remains within the distances Za (approach side) and Zd (departure side) of the redirection zone dimensions.

To meet and even exceed these new standards, REBLOC has developed two innovative terminals. The REBLOC TE 80XA_17.9 is the first precast concrete terminal compliant with restraint category T110/1 (BDT), designed for safe redirection in both approach and departure scenarios. It can be installed on various surfaces and prevents rear-end collisions in confined traffic environments.

The REBLOC TE 80XA_4.1, developed for end-of-barrier applications (UTD = uni-directional terminal – departure), also meets T110/1 requirements. Compact and cost-effective, it’s ideal for space-limited installations while ensuring controlled vehicle redirection.

Beyond standard compliance, REBLOC tested its terminal under extreme real-world conditions: a frontal, head-centered impact at 130km/h – well above standard requirements. Despite the increased speed, the terminal met all key performance parameters, proving its reliability for high-speed road networks.

These forward-thinking systems comply with the highest technical standards. They also, importantly, significantly contribute to improved road safety by minimising impact severity and reducing the risk of secondary collisions.

Innovation means not just meeting standards, but setting new ones. REBLOC’s innovative terminals not only meet the requirements of the new Technical Specification but also actively contribute to enhancing road safety through advanced technologies. These new systems help reduce the risk of rear-end collisions, offering a sustainable solution for safer roadways.

Innovation means not just meeting standards – but setting new ones. REBLOC’s innovative terminals not only meet the requirements of the new Technical Specification but also actively contribute to enhancing road safety through advanced technologies. These new systems help reduce the risk of rear-end collisions, offering a sustainable solution for safer roadways.

For more information on companies in this article

Related Content

  • Muscat Airport contract for Cooper
    February 9, 2012
    A huge project in Oman will see a proposed new terminal at Muscat International Airport, which has been budgeted at US$1.17 billion, completed by 2014. It will have the capacity to handle 12 million passengers annually, and further expansions planned by The Ministry of Transport and Communication in three subsequent phases will ultimately boost the airport’s capacity to 48 million passengers annually by 2050.
  • Europe’s COVID escape route
    April 2, 2021
    The European Union’s COVID recovery budget and its NextGenerationEU programme are major opportunities for national, regional and local road authorities, says Jose Diez*.
  • Polymer enhanced bitumen technology improves performance
    July 11, 2012
    As overall traffic volumes increase, the contribution from commercial vehicles with increased axle loads is growing, putting ever more strain on roads and highway maintenance budgets. Highway authorities are looking for products that will be able to cope better and are more cost effective over the life of a road. Technical innovation is the only way to answer this challenge effectively, says BP Bitumen, one of a number of specialist companies involved in bitumen technology.
  • Speeding repairs of concrete motorway
    April 2, 2014
    A novel technique is now being introduced in the UK that can help cut construction costs, as well as the time needed for road repairs. Connect Plus, the company that finances, operates and upgrades the 400km M25 network on behalf of the UK’s Highways Agency, has pioneered an innovative method for the replacement of life-expired concrete motorway The introduction of this method is helping reduce the delays experienced by drivers by as much as 80% in the sections of road where it is now being implemented.