Skip to main content

IRF Global Road Achievement Award Laureate

As a key engineering project on the Changsha-Chongqing Expressway in Southwest China, the Aizhai Bridge, constructed by the Hunan Road & Bridge Construction Group, was opened to traffic in March 2012. The Aizhai Bridge crosses the 1000m-wide scenic Dehang Canyon at an elevation of 355m. It has a main span of 1,176m, making it the world’s longest canyon-crossing bridge in the world. The erection of the main girder (the stiffening girder) of the Aizhai Bridge encountered serious challenges, including a la
January 5, 2016 Read time: 3 mins
The landmark Aizhai Bridge in Southwest China carries the Changsha-Chongqing Expressway over the scenic Dehang Canyon at an elevation of 355m
RSSAs a key engineering project on the Changsha-Chongqing Expressway in Southwest China, the Aizhai Bridge, constructed by the Hunan Road & Bridge Construction Group, was opened to traffic in March 2012. The Aizhai Bridge crosses the 1000m-wide scenic Dehang Canyon at an elevation of 355m. It has a main span of 1,176m, making it the world’s longest canyon-crossing bridge in the world.

The erection of the main girder (the stiffening girder) of the Aizhai Bridge encountered serious challenges, including a large bridge span length, a deep valley, dangerous mountain roads, a narrow construction site, and complex weather conditions — among others. All the three conventional girder-erecting techniques at the time failed to address the needs in constructing the Aizhai Bridge. After five years of hard and persistent exploration, the team at HNRB proposed an innovative technique, called the “Girder-Conveying Track Cable” technique, which overcame the constraints of conventional methods. This new technique enables a safe, highly efficient, and economical solution for girder erection and has now been widely accepted around the world as the fourth method for the construction of suspension bridges.

The basic principle of the GCTC technique is to install horizontal wire ropes under the suspenders as temporary traveling rails (track cables), which are used to carry and transport segments of the main girder from both banks to their mounting positions, where they are then raised by lifting devices and connected to the suspenders. The erection of the main girder starts from the mid-span and proceeds from there to both banks until all the segments are completed.
This technique creatively uses the main cable, suspenders and temporary track cables to form a safe and stable supporting system. It also significantly increases the installation capacity and enables the transportation and installation of large-size girder segments (up to 200tonnes). In addition, it significantly speeds up the construction, and with a construction speed six times faster than the conventional methods, this technique has become the fastest technique for erecting the main girder of suspension bridges. The technology is especially applicable for the construction of long-span suspension bridges when the horizontal or vertical transportation of the girder segments is restricted. It is also applicable for the installation of the main girder of half-through and through arch bridges, and is expected to be a promising technique for wide use.

The application of the GCTC Technique has shown great success at the Aizhai Bridge. It took only 80 days to complete the erection of all 69 girder segments and shortened the construction period by 10 months, as compared to conventional methods. Meanwhile, the new technology has reduced the use of structural steel by about 2000 tonnes, creating a direct economic benefit of US $20.5 million (CNY 124 million).

3918 IRF Washington.

For more information on companies in this article

Related Content

  • Harnessing Africa’s transportation potential
    August 12, 2014
    1st IRF Africa Regional Congress inspires stakeholders to take action. IRF’s 1st Africa Regional Congress concluded on June 6th with a renewed call for African leaders to address the infrastructure and mobility challenges that so often accompany rapid economic growth and increasing motorisation. The highly successful event was held against a backdrop of unprecedented road infrastructure investments across sub-Saharan Africa, but also mounting mobility challenges. “The results of investments in roads have
  • New Norwegian bridge open to traffic
    December 11, 2018
    A new bridge is now open to traffic in Norway. The Hålogaland Bridge has a total length of 1,533m and a main span of 1,145m and is Norway's second longest suspension bridge. The structure was designed by COWI and crosses the deep waters of Rombaksfjorden in northern Norway. The bridge will improve road safety, as well as reducing the distance between Narvik and Bjerkvik by 18km. The pre-existing route around Rombaksfjorden is frequently exposed to landslides and the opening of the bridge shortens travel tim
  • IRF Announces winners of 2017 Global Road Achievement Awards
    November 2, 2017
    The International Road Federation (IRF) has announced the winners of the 2017 IRF Global Road Achievement Awards at the closing of the IRF Middle East and North Africa Regional Congress and Exhibition. This year, the IRF honours 11 projects from around the world, each leading in innovation across major road and highway disciplines. The selection was made by an international panel of senior road development specialists. "Much of the transport sector's accomplishments are unnoticed by the hundreds of m
  • The Fehmarnbelt Tunnel, another Danish connection
    June 20, 2017
    The Fehmarnbelt Tunnel between Denmark and Germany is both ambitious and innovative, explains Susanne Kalmar Pedersen, project director at design engineering firm Ramboll, adviser to the client Fehmarn A/S. The ambitious Fehmarnbelt Tunnel - one of Europe’s largest ongoing infrastructure projects - is a priority project within the EU’s Trans European Network (TEN-T) programme. It will link the German island of Fehmarn with the Danish island of Lolland. The tunnel is an 18km immersed combined road and rail l