Skip to main content

IRF Global Road Achievement Award Laureate

As a key engineering project on the Changsha-Chongqing Expressway in Southwest China, the Aizhai Bridge, constructed by the Hunan Road & Bridge Construction Group, was opened to traffic in March 2012. The Aizhai Bridge crosses the 1000m-wide scenic Dehang Canyon at an elevation of 355m. It has a main span of 1,176m, making it the world’s longest canyon-crossing bridge in the world. The erection of the main girder (the stiffening girder) of the Aizhai Bridge encountered serious challenges, including a la
January 5, 2016 Read time: 3 mins
The landmark Aizhai Bridge in Southwest China carries the Changsha-Chongqing Expressway over the scenic Dehang Canyon at an elevation of 355m
RSSAs a key engineering project on the Changsha-Chongqing Expressway in Southwest China, the Aizhai Bridge, constructed by the Hunan Road & Bridge Construction Group, was opened to traffic in March 2012. The Aizhai Bridge crosses the 1000m-wide scenic Dehang Canyon at an elevation of 355m. It has a main span of 1,176m, making it the world’s longest canyon-crossing bridge in the world.

The erection of the main girder (the stiffening girder) of the Aizhai Bridge encountered serious challenges, including a large bridge span length, a deep valley, dangerous mountain roads, a narrow construction site, and complex weather conditions — among others. All the three conventional girder-erecting techniques at the time failed to address the needs in constructing the Aizhai Bridge. After five years of hard and persistent exploration, the team at HNRB proposed an innovative technique, called the “Girder-Conveying Track Cable” technique, which overcame the constraints of conventional methods. This new technique enables a safe, highly efficient, and economical solution for girder erection and has now been widely accepted around the world as the fourth method for the construction of suspension bridges.

The basic principle of the GCTC technique is to install horizontal wire ropes under the suspenders as temporary traveling rails (track cables), which are used to carry and transport segments of the main girder from both banks to their mounting positions, where they are then raised by lifting devices and connected to the suspenders. The erection of the main girder starts from the mid-span and proceeds from there to both banks until all the segments are completed.
This technique creatively uses the main cable, suspenders and temporary track cables to form a safe and stable supporting system. It also significantly increases the installation capacity and enables the transportation and installation of large-size girder segments (up to 200tonnes). In addition, it significantly speeds up the construction, and with a construction speed six times faster than the conventional methods, this technique has become the fastest technique for erecting the main girder of suspension bridges. The technology is especially applicable for the construction of long-span suspension bridges when the horizontal or vertical transportation of the girder segments is restricted. It is also applicable for the installation of the main girder of half-through and through arch bridges, and is expected to be a promising technique for wide use.

The application of the GCTC Technique has shown great success at the Aizhai Bridge. It took only 80 days to complete the erection of all 69 girder segments and shortened the construction period by 10 months, as compared to conventional methods. Meanwhile, the new technology has reduced the use of structural steel by about 2000 tonnes, creating a direct economic benefit of US $20.5 million (CNY 124 million).

3918 IRF Washington.

For more information on companies in this article

Related Content

  • PERI helping to build world’s longest underwater tunnel
    April 4, 2013
    In China, PERI is playing a crucial role in the construction of the world’s longest underwater tunnel The 6km tunnel is part of a new 35km long road connection across the Pearl River bay in southern China, aiming to allow Hong Kong to grow both physically and economically with Macau and also Zhuhai on mainland China. In a huge field factory near the underwater tunnel site, two production lines are being used to produce a total of 33 tunnel elements. Each of the reinforced concrete tubes for the standard sec
  • Float positioning for Bandra Worli Bridges
    May 29, 2024
    In Mumbai, India, two steel bridges have been barged to site and then lifted into position as part of the Mumbai Coastal Road-Bandra Worli Sea Link project.
  • India’s longest road tunnel continues apace with Atlas Copco support
    May 20, 2014
    The challenging construction of India’s largest road tunnel is part of a vital US$500 million project aiming to connect the isolated northern state of Jammu and Kashmir with the rest of the vast and highly populated country. Guy Woodford reports Travelling on National Highway 1A (NH 1A) in northern India should be the dictionary definition of ordeal. The single lane, narrow and winding road crosses some of the steepest, most treacherous terrain on the planet. The arduous route becomes especially difficult t
  • IRF announces winners of its 2018 Global Road Achievement Awards
    January 15, 2019
    IRF has announced the winners of the 2018 IRF Global Road Achievement Awards, a global competition to recognise outstanding achievement by road professionals. Instituted in 2000, the Awards have distinguished 150 programs, projects and products from around the world. This year, the IRF is honouring 11 projects from around the world, each leading the way in innovation across major road and highway disciplines. The selection was made by an international panel of senior road development specialists. "As an in