Skip to main content

IRF Global Road Achievement Award Laureate

As a key engineering project on the Changsha-Chongqing Expressway in Southwest China, the Aizhai Bridge, constructed by the Hunan Road & Bridge Construction Group, was opened to traffic in March 2012. The Aizhai Bridge crosses the 1000m-wide scenic Dehang Canyon at an elevation of 355m. It has a main span of 1,176m, making it the world’s longest canyon-crossing bridge in the world. The erection of the main girder (the stiffening girder) of the Aizhai Bridge encountered serious challenges, including a la
January 5, 2016 Read time: 3 mins
The landmark Aizhai Bridge in Southwest China carries the Changsha-Chongqing Expressway over the scenic Dehang Canyon at an elevation of 355m
RSSAs a key engineering project on the Changsha-Chongqing Expressway in Southwest China, the Aizhai Bridge, constructed by the Hunan Road & Bridge Construction Group, was opened to traffic in March 2012. The Aizhai Bridge crosses the 1000m-wide scenic Dehang Canyon at an elevation of 355m. It has a main span of 1,176m, making it the world’s longest canyon-crossing bridge in the world.

The erection of the main girder (the stiffening girder) of the Aizhai Bridge encountered serious challenges, including a large bridge span length, a deep valley, dangerous mountain roads, a narrow construction site, and complex weather conditions — among others. All the three conventional girder-erecting techniques at the time failed to address the needs in constructing the Aizhai Bridge. After five years of hard and persistent exploration, the team at HNRB proposed an innovative technique, called the “Girder-Conveying Track Cable” technique, which overcame the constraints of conventional methods. This new technique enables a safe, highly efficient, and economical solution for girder erection and has now been widely accepted around the world as the fourth method for the construction of suspension bridges.

The basic principle of the GCTC technique is to install horizontal wire ropes under the suspenders as temporary traveling rails (track cables), which are used to carry and transport segments of the main girder from both banks to their mounting positions, where they are then raised by lifting devices and connected to the suspenders. The erection of the main girder starts from the mid-span and proceeds from there to both banks until all the segments are completed.
This technique creatively uses the main cable, suspenders and temporary track cables to form a safe and stable supporting system. It also significantly increases the installation capacity and enables the transportation and installation of large-size girder segments (up to 200tonnes). In addition, it significantly speeds up the construction, and with a construction speed six times faster than the conventional methods, this technique has become the fastest technique for erecting the main girder of suspension bridges. The technology is especially applicable for the construction of long-span suspension bridges when the horizontal or vertical transportation of the girder segments is restricted. It is also applicable for the installation of the main girder of half-through and through arch bridges, and is expected to be a promising technique for wide use.

The application of the GCTC Technique has shown great success at the Aizhai Bridge. It took only 80 days to complete the erection of all 69 girder segments and shortened the construction period by 10 months, as compared to conventional methods. Meanwhile, the new technology has reduced the use of structural steel by about 2000 tonnes, creating a direct economic benefit of US $20.5 million (CNY 124 million).

3918 IRF Washington.

For more information on companies in this article

Related Content

  • Scotland’s new Queensferry Crossing over the Forth Estuary
    December 23, 2015
    The new Queensferry Crossing under construction in Scotland will be the third landmark bridge spanning the Forth Estuary - Mike Woof writes When the new Queensferry Crossing over the Forth Estuary opens at the end of 2016, it will be the third landmark bridge to be built spanning this short stretch of water. Lying alongside the existing road bridge and the historic rail bridge, this new structure will be as groundbreaking as the two earlier crossings were at the time of their construction.
  • Norway’s record breaking undersea road tunnel
    February 25, 2015
    The world's deepest road tunnel is currently in construction near Stavanger in Norway but is only the prelude to even larger projects - report and photographs by Adrian Greeman. Norway's convoluted coastline of fjords and high mountains is famously scenic but also a major problem for transport and connections. The country has long experience of constructing tunnels as a result. Now a series of tunnels underway, or in design, around the oil industry city of Stavanger will stretch its skills more than usual.
  • Indonesia’s Dardak named IRF Professional of the Year by IRF Washington
    October 1, 2014
    Indonesia’s vice-minister of Public Works is engineer Hermanto Dardak and he has been awarded the International Road Federation’s highest and most prestigious individual distinction. Established in 1951, the Professional of the Year Award recognises eminent public, private and education sector professionals with an outstanding track record of leadership and commitment to the road transport industry.
  • Kosovo's award-winning green highway construction
    March 20, 2012
    A new highway is proving an economic lifeline for the tiny country of Kosovo – Mike Woof reports. Road projects in Europe rarely meet such widespread public approval and support as the new Route 7 highway being built in the new Balkan state of Kosovo. The first sections of the new road opened to traffic in November 2011, with locals turning out in large numbers to celebrate the event. The official opening was carried out by the country’s prime minister Hashim Thaçi, president Atifete Jahjaga, and members of