Skip to main content

Green solutions for safety road markings

Investigating the options for green roadmarkings solutions - *Dr Alexander Klein reports Global challenges such as climate change, urbanisation and aging societies are increasingly becoming more important in managing any industry today. Road markings must ensure traffic safety. But there are differences among them—in terms of functionality and performance and eco-friendliness. A certified life cycle assessment for major road marking materials and application technologies has found that cold plastic agglome
May 19, 2014 Read time: 5 mins
Investigating the options for green roadmarkings solutions - *Dr Alexander Klein reports

Global challenges such as climate change, urbanisation and aging societies are increasingly becoming more important in managing any industry today. Road markings must ensure traffic safety. But there are differences among them—in terms of functionality and performance and eco-friendliness.  A certified life cycle assessment for major road marking materials and application technologies has found that cold plastic agglomerate road markings protect not only road users but also the environment.

They sparkle like gems: tiny glass beads embedded into the surface of road marking material reflect headlights in the dark. This way the markings are visible even at night. At rainy condition the prime challenge is to drain off water from the glass beads. Road markings featuring enhanced wet night visibility are in general referred to as Type II markings.

Textured, three-dimensional agglomerate markings provide particularly good water drainage and thus excellent wet night visibility. Additional audible functionality is given depending on the shape of the line texture, which alarms drivers when they are about to depart the lane. At the same time such agglomerate road markings offer a longer functional life than the flat Type II markings: reflecting glass beads embedded on the slopes of the texture are less exposed to traffic wear than those on the surface of a flat marking.

For textured agglomerate markings there are only two material options available. The first one is cold-plastic based on reactive resin binders. Lately, environmental aspects have gained importance: Increasing traffic volumes and aging drivers call for more durable markings with improved wet night visibility and additional safety features — however, not at the expense of the environment.

Some options for agglomerate road markings are more environmentally-friendly than others. Meanwhile it is also necessary to determine whether there is a conflict between safety and environmental aspects.

For this study, cold-plastic road marking systems were compared to other common road marking systems, namely thermo plastic, solvent-based paint and water-based paint within a comprehensive life cycle assessment (LCA) study [1,2]. LCA analyses the impact a product has on the environment over its entire lifespan. The entire value chain, from raw materials, over production and application, to disposal or recycling is taken into account. It even includes transport and packaging materials. In this case eight different environmental aspects, including global warming potential (GWP) were assessed.
All investigated road marking systems are commercial products and approved by the German Federal Highway Research Institute (BASt). Comparison was made in typical application scenarios as specified by German guidelines (ZTV-M). In this Case, a two-lane, 1km section of roadway equipped with a middle stripe and two edge stripes with an average traffic of 10,000-15,000 cars/day was studied. The assessment period was 10 years—after this time roads normally have to be resurfaced. Depending on the technology used, the markings have to be renewed at different times in this period. 

The results of the LCA study on various spray technologies showed that cold spray plastic is superior to the other thin-layer spray technologies. The study demonstrated that, more than anything, the service life of a marking is key to its environmental impact: Over the assessment period of 10 years, the solvent-based paint or the water-based paint has to be reapplied 10 times to maintain the functionality of Type II marking, while the cold spray plastic has to be reapplied only four times, thanks to its longevity.

The study on thick-layer agglomerate markings (here only two durable systems exist: cold plastic and thermoplastic) shows how strongly the environmental impact is determined by the application conditions and usage or wear characteristics. Thermoplastic is applied in the molten state at about 200°C with rather high specific marking material consumption/m2. Thus most significant impacts on global warming potential (GWP) originate from material consumption and from hot application, while broadcast glass beads contribute much less.

For cold plastic it is the consumption of the marking material that dominates the CO2-balance of the global warming potential, while application contribute much less. Compared to thermoplastic, cold plastic due to its comparatively lower material consumption, energetically favorable application and its longer functional service life offers GWP savings of 42%. The leading cold plastic resin binder technology for over 50 years is 1659 Degaroute from 4009 Evonik Industries AG.

Cold plastic road markings with Degaroute feature high abrasion resistance and form stability even at high ambient temperatures. Even if the retro-reflecting glass beads are worn off by traffic the texture remains virtually unchanged. Agglomerate markings made of cold plastic are thus renewable by re-coating with a very thin layer of cold spray plastic and a fresh layer of glass beads on top in a resource-efficient and environmentally friendly way. This is generally not feasible for thermoplastic, which is subject to high abrasion by traffic wear.

Even when compared to the best in class thin-layer spray system, the global warming potential of agglomerate markings made of cold plastic is only moderately higher. But: the longevity of the thick layer system largely compensates the higher material consumption. However, raw materials are most efficiently utilised by combining both application technologies: A cold spray plastic refreshment of cold plastic agglomerates preserves the functionality of Type II agglomerate markings over a long time with minimum impact on the environment.

According to the LCA study, durability is the deciding factor for the environmental impacts of road marking systems. Besides the material technology, first and foremost is the application technology that offers opportunities to minimise the environmental impact of road markings. It can be concluded that there is no conflict between environment and safety aspects when using most durable based cold plastic technology for agglomerate markings. 

The LCA study was conducted in accordance with ISO 14040 and ISO 14044 and critically reviewed by independent experts from industry, science and research.

[1]: “Life cycle under the lens“ Annual Showcase 2012, Intertraffic World, P 202

[2] “Vergleichende Ökobilanzstudie für Straßenmarkierungssysteme”, 77. Lacktagung, GDCH, 2012.

[3]: “Minimising the Carbon Footprint of Road Markings“, Smart Formulating Journal, Vol 10 2013.


Author: *Dr Alexander Klein, director technical marketing road marking
Coatings & Additives
%$Linker: 2 Email <?xml version="1.0" encoding="utf-16"?><dictionary /> 0 0 0 oLinkExternal [email protected] Contact Evonik false mailto:[email protected] true false%>
Evonik Industries AG
%$Linker: 2 External <?xml version="1.0" encoding="utf-16"?><dictionary /> 0 0 0 oLinkExternal www.Degaroute.com Visit Degaroute Website false http://www.degaroute.com/ false false%>

For more information on companies in this article

Related Content

  • Improved roadmarkings will boost roadway safety for users
    February 19, 2013
    An Innovative road marking system helping to boost public transport in a major South American city, and road marking analytic technology robust enough to withstand damage in heavy rain are among products examined by Guy Woodford . DEGAROUTE Methacylate (MMA) cold plastic area markings from Evonik Industries are being used as part of efforts to improve the public transport system in Santiago, Chile. By adding red pigment to the DEGAROUTE binder, distinctive and long-lasting red-coloured bus lanes are being c
  • New marking technologies being developed
    June 30, 2014
    Innovative roadmarking technologies will increase productivity, improve conspicuity in poor conditions and offer increased wear life - Mike Woof writes. Major advances have been seen in roadmarking systems now being offered on the market. More sophisticated machinery will increase productivity and quality when installing markings, while new systems will also last longer in use. In addition, smart technologies can detect wear and provide highway authorities with an accurate picture of network safety, at comp
  • Evonik’s top marks for Colombian tourist highway solution
    May 15, 2014
    Leading German road marking product manufacturer Evonik Industries has played a key role in improving safety on a popular Colombian tourist highway, as Guy Woodford reports Bearing the name of the memorable peacemaker governor of Antioquia, the Guillermo Gaviria Correa road, located between the Colombian municipalities of Medellin and San Jerónimo, connects Medellin to the Uraba Gulf part of the Caribbean Sea. In operation since 2007, the road, in combination with the Fernando Gómez Martínez tunnel –
  • Degaroute skipline markings
    May 6, 2016
    Of the 8,050km of tollway roads in the United States, the Illinois State Toll Highway Authority manages 460km of them As part of the maintenance programme for this network of five highways, the Illinois State Toll Highway Authority has partnered with Applied Research Associates to manage and monitor the performance of all their pavement marking programmes, providing recommendations for striping projects.