Skip to main content

Clever electric solution for embankment stabilisation

A highly innovative solution for road embankment stabilisation has helped save costs by up to 30% over conventional techniques. Balfour Beatty Mott MacDonald has used electrical current to stabilise embankments on a busy UK dual carriageway, avoiding disruption to motorists, cutting carbon by 40% and costs by 30%, and producing zero waste When slope failure was detected on embankments carrying the popular A21 dual carriageway, Balfour Beatty Mott MacDonald pioneered a novel technique to tackle the prob
August 28, 2013 Read time: 3 mins
The positively charged anodes were driven into the slope and negatively charged cathodes are installed into holes formed using a continuous flight auger, with the cathodes allowing drainage

A highly innovative solution for road embankment stabilisation has helped save costs by up to 30% over conventional techniques. Balfour Beatty Mott MacDonald has used electrical current to stabilise embankments on a busy UK dual carriageway, avoiding disruption to motorists, cutting carbon by 40% and costs by 30%, and producing zero waste

When slope failure was detected on embankments carrying the popular A21 dual carriageway, 1530 Balfour Beatty Mott MacDonald pioneered a novel technique to tackle the problem. This solution at Stocks Green avoided lane closure, preventing traffic disruption on the busy road, and also cut costs.

The earth embankment had been constructed with sides that were too steep and combined with poor drainage, this was causing the slopes to shear and slump. “Progressive failure would have undermined the safety barrier,” said Michael Tandy, Balfour Beatty Mott MacDonald geotechnical engineer.

Slope failure is normally tackled by replacing earth with granular material that is freer draining and better withstands loading, mixing lime into the embankment to stiffen and strengthen it, installing soil nails, or building retaining walls. All involve removing vegetation and closing traffic lanes. “The A21 is a major commuter route, so restricting the width of the road would have resulted in major congestion,” Tandy said.

Instead the firm opted to try a technique combining electro-osmosis with soil nailing and drainage, patented by its supply chain partner Electrokinetic. More than 200 years ago, it was observed that when an electrical current was passed through fine-grained material, it drew water along with it. Electrokinetic has harnessed this principle, known as, electrokinetic geosynthetics (EKG).

The company has developed a lightweight, mobile, track-mounted drilling and nailing rig, which was used to install 195 perforated steel tubes into the ground. Driven anodes were angled downward, acting like nails to hold material in place, while cathodes were inserted into pre-bored holes, sloping upward to act as drains to bring water from deep within the embankment to the surface.

Using a mobile generator, current was passed from anodes to cathodes to draw water out of the soil structure, consolidating it. “This method has been used in mining, in construction of dams and docks and on the 1211 London Underground,” Michael explains. “This was the first time the technology had been applied to a major road in the UK.”
After six weeks the drainage phase was complete and the electricity shut off. To convert the anodes into permanent soil nails, grout was injected down the tubes and forced out, through the perforations, into the surrounding ground, locking the nails firmly into the soil matrix. The drains remain permanently in place.

Work was carried out from the foot of the embankment, meaning no lane closures were required. “The approach taken by Balfour Beatty Mott MacDonald meant personnel weren’t exposed to risk from passing vehicles,” Tandy said.

The scheme has won two industry awards for innovation and sustainability. “The technology worked so well that the 2309 Highways Agency has already awarded contracts to use it elsewhere on the highways network,” Tandy said.

For more information on companies in this article

Related Content

  • Bertha ends her Alaskan Way voyage in Seattle
    December 21, 2017
    Seattle's State Route 99 viaduct is coming down. David Arminas was on site. Bertha, the world’s largest diameter earth pressure balance tunnel boring machine, with a cutterhead diameter of 17.5m, is no more. Her 2.7km journey underneath the waterfront area of Seattle finished on April 4 and the power went off for the last time on an extraordinary TBM that had finally completed an extraordinary job. “A small sidewalk job would have had more impact on city traffic than we have had,” says Brian Russell a v
  • Cut and cover consolidation
    July 10, 2012
    Foundation specialist Forasol has developed an innovative technique for anchor drilling that is improving ground consolidation on road projects in Switzerland. The technique has been widely used on a number of highway projects in the country, including construction of a new 1.3km long cut-and-cover trench for the A9 highway in south western Switzerland.
  • Success of hot mix asphalt road recycling
    March 7, 2012
    Russian construction firm Kamdorstroy has carried out a successful demonstration of recycling techniques to over 60 highway officials, academics and contractors from all over the CIS states. The demonstration was carried out in co-operation with the Russian Federal Highway and Tatarstan Highway authorities and involved milling, recycling and overlaying a road with hot mix asphalt. The work was carried out on a 7.5m wide roadway with 3.8m wide lanes (with an overlap) using machinery and techniques new to Rus
  • Securing safer transportation infrastructure through non-destructive technology
    June 16, 2014
    Kevin Vine reports on the use of non-destructive testing for structural analysis of bridges Seven years ago, the overpass collapse in Laval, Québec that led to the death of five people brought to light severe issues with the state of the country’s bridges and transportation infrastructure. More recently, a crack in the Champlain Bridge to Montreal that forced over 160,000 commuters to find alternate routes to work reaffirmed a need for greater emphasis on early detection before a crisis occurs.