Skip to main content

Automated testing is safer, cheaper and more thorough

New tests for cracking and rutting are easy to perform, use existing equipment and work well on mixes with different binders and recycled content - Kristina Smith writes Researchers at the Texas A&M Transportation Institute (TTI) have developed new tests for cracking and rutting, designed to be quick and easy to carry out, using existing laboratory equipment. The most advanced of these is the IDEAL Cracking Test (IDEAL-CT), which could be appearing in specifications in some of the US states in around six
May 10, 2019 Read time: 5 mins
Fujie Zhou is the research engineer behind the development of the new IDEAL Cracking and Rutting tests
New tests for cracking and rutting are easy to perform, use existing equipment and work well on mixes with different binders and recycled content - Kristina Smith writes


Researchers at the Texas A&M Transportation Institute (TTI) have developed new tests for cracking and rutting, designed to be quick and easy to carry out, using existing laboratory equipment. The most advanced of these is the IDEAL Cracking Test (IDEAL-CT), which could be appearing in specifications in some of the US states in around six months’ time.

“Cracking is a huge problem in the US,” said Fujie Zhou, research engineer at Texas A&M Transportation Institute, an expert in this field who is leading the development of both tests. “Every Department of Transportation is looking for a simple, practical cracking test for use during mix design, quality control and quality assurance.”

The tests have been developed under one of three Innovations Deserving Exploratory Analysis (IDEA) projects managed by the 2774 Transportation Research Board (TRB). The highways-themed research is funded by 3510 American Association of State Highway and Transportation Officials (AASHTO) as part of the 1257 National Cooperative Highway Research Program (NCHRP).

The most commonly used cracking tests in the US are the Texas Overlay Tests and the Illinois Flexibility Index Test. Both are good tests, according to Zhou, but they each require significant preparation of the specimens before testing, involving notching and – in the case of the Texas Overlay Test specimen – gluing too.

“Based on my experience, the more steps you include in sample preparation, the more potential human error you introduce,” said Zhou, who has been working on cracking-related issues for the last 20 years.

THe IDEAL-CT simply requires a disc-shaped specimen to be moulded, 150mm in diameter and 62mm thick (which is the same size as the specimen required for the Hamburg wheel tracking test). No notching or gluing is required, and the specimen can be tested in a standard indirect tensile strength testing machine.

“We use exactly the same machine, the same test, even the same loading speed,” said Zhou. “The only thing we do differently is use a new way of looking at the data.”

The IDEAL-CT produces a fraction mechanics-based parameter called the Cracking Tolerance Index (CT Index). The larger the CT Index, the better the cracking resistance for the mix.

Most laboratories will have an indirect tensile strength testing machine and, even if they had to buy it new, the cost would be less than $10,000, according to Zhou. This compares to specialised equipment which would cost around $50,000.

Laboratories may need to buy an accessory because the calculation of the CT Index requires that the whole load versus displacement curve be recorded, rather than just the maximum load which is normal for that machine. But this would cost less than $3,500, said Zhou. Alternatively, the load-displacement readings could be recorded manually.

The test has been shown to have good correlation with the existing cracking tests and also with field cracking performance data collected from a number of sources. Independent testing at the National Centre for Asphalt Technology (NCAT) Test Track also verified its correlation with in-field performance. The researchers at TTI ran tests to check its sensitivity to the type of binder used, binder content, RAP proportions and ageing and report that the test is sensitive to these different conditions.

The Coefficient of Variation (COV) for the IDEAL-CT is less than 20%. Although this sounds high, it is actually low, explainED Zhou: “In civil engineering, a COV of less than 20% is pretty good,” he SAID. “When you are producing asphalt mixes, we are talking in tonnes not milligrammes, it’s not like chemistry. Cracking is a localised facture which means that the cracking test is much more variable than other tests such as stiffness or rutting resistance.”

Six DOTs have committed to an implementation programme for the test: Texas, Oklahoma, Virginia, Kentucky, Minnesota and Main. Texas DOT is already planning to use the IDEAL Cracking Test for quality control and Virginia has said that it will specify it for all mixes. Georgia is doing laboratory studies on the test, says Zhou.

TTI published a final report on the new testing method in January this year and there is a draft ASTM standard currently under review.

IDEAL Rutting Test


Having spent two years developing the IDEAL Cracking Test, Zhou and his colleagues have now moved on to create the IDEAL Rutting Test (IDEAL-RT). This can be carried out using a new shear rutting fixture which works with a regular loading frame such as an MTS, UTM or indirect tensile tester.

Currently-used rutting tests, the Hamburg wheel tracking test and the asphalt pavement analyser (APA) require long testing hours and therefore have not often been used for quality assurance and quality control. The new rutting test uses the same sized disc as the cracking test and proposes that the shear strength of the specimen be used as the rutting parameter; the larger the shear strength, the better the rutting resistance of the mix.

Details of the test were due to be published in the Journal of the Association of Asphalt Paving Technologists (AAPT) in March 2019. It shows very good repeatability, explained Zhou, with a COV of 5% and is sensitive to variations in binder properties content, RAP content and ageing.

The goal in developing these two tests is to be able to achieve Balanced Mix Design, a concept which was developed by TTI over a decade ago. This requires mixes to have good resistance to both rutting and cracking, rather than withstand one at the expense of the other.

Zhou hopes that his work can have far-reaching benefit. “If people can use the tests, and everyone benefits from them, I would be very happy,” he said. “The goal is to help contractors build better roads that last longer and that means that every tax payer will benefit.”

Related Content

  • Zipping up road lanes – with Barrier Systems
    September 10, 2018
    QMB has a Lindsay Road Zipper on duty near Montreal. World Highways deputy editor David Arminas climbed aboard As vice president of Canadian barrier specialist QMB, based in Laval, Quebec, Marc-Andre Seguin is sanguine about the future for moveable barriers. On the one hand, it looks good. The oft-stated advantage of moveable barriers is that the systems are cheaper to install than adding a lane or two to a highway or bridge. Directional changes to lanes can boost volume on a road without disrupting tra
  • On track for excellence in asphalt plants
    May 30, 2013
    While one leading asphalt plant company has played a key role in the creation of the new Circuit of the Americas F1 racetrack, others have been releasing new plants and plant-related technology onto the market, some of which has been exhibited at major world industry shows. Guy Woodford reports. Astec played an important role in the new Circuit of the Americas Formula 1 racetrack in Austin, Texas. The asphalt base, binder, and surface courses for the 5.47km asphalt road course, which staged its first F1 rac
  • Bridge inspection: destructive versus non-destructive methods
    January 6, 2015
    Tens of thousands of bridges in the United States are in desperate need of repair. But where to begin analysing their deteriorating state? Roger Roberts* investigates tips and techniques for ensuring bridge safety The average age of America’s more than 600,000 crumbling bridges is 42 years – many are 60 to 80 years old. The situation is dire, with many described as functionally obsolete, according to the American Society of Civil Engineers’ latest edition of its Report Card for America’s Infrastructure.
  • Seal of approval
    August 2, 2012
    Timely maintenance using proven cost-effective methods can extend the life of a highway by many years as Patrick smith reports Highways are expensive assets to construct, and the wear and tear of modern traffic means that regular maintenance will delay costly repairs or in extreme cases reconstruction. There are a number of methods of carrying out such maintenance, and these include the use of slurry seals and micro-surfacing, which are cold mixed asphalt which is a mixture of graded aggregate, asphalt emul