Skip to main content

New alternative to batteries for EVs

A new development looks set to offer an efficient alternative to lithium ion batteries for use in electric vehicles (EVs). At present the current generation of EVs feature lithium-ion batteries to store energy. However the performance of the lithium ion batteries has been criticised, particularly with regard to the recharge time required as this is considerably longer than the time needed to refuel a combustion engine-powered vehicle. While faster charging technologies are available for lithium ion batterie
November 15, 2013 Read time: 3 mins
A new development looks set to offer an efficient alternative to lithium ion batteries for use in electric vehicles (EVs). At present the current generation of EVs feature lithium-ion batteries to store energy. However the performance of the lithium ion batteries has been criticised, particularly with regard to the recharge time required as this is considerably longer than the time needed to refuel a combustion engine-powered vehicle. While faster charging technologies are available for lithium ion batteries, these reduce battery life considerably. The charging time has been identified as a major reason for the slow adoption rate of EVs around the world. However a team of engineers is working on a novel solution by developing a graphene supercapacitor that can store almost as much charge as a lithium ion battery but charges in just 16 seconds.

This new capacitor is being developed at the Gwangju Institute of Science and Technology in South Korea. The team’s high-performance supercapacitors use graphene and are said to store almost as much energy as a lithium-ion battery. In terms of practicality, they can charge and discharge in seconds, and maintain 98% of their initial value after 10,000 cycles.

The project is using a highly porous form of graphene that has a very large internal surface area. This material is produced by reducing graphene oxide particles with hydrazine in water agitated with ultrasound. The graphene powder is then packed into a coin-shaped cell, a pressure of 300kg/cm2 for five hours and dried at 140°C. The resulting graphene electrode is highly porous, which allows the electrode to accommodate much more electrolyte. And this determines the amount of charge the supercapacitor can hold. The team has measured the performance of the supercapacitor and it is said to store energy at a density of more than 64Wh/kg at a current density of 5A/gramme. That is almost comparable with lithium-ion batteries, which have an energy density of between 100 and 200Wh/kg.

The engineers say they can fully charge the supercapacitor in just 16 seconds and have repeated this some 10,000 times without a significant reduction in capacitance. This is significant as it also offers a practical alternative to the more limited working life of a lithium ion battery. The cost of the supercapacitor technology has not yet been revealed however.

Related Content

  • Hydrogen burners for asphalt plants
    September 3, 2024
    Key manufacturers in the asphalt plant market, Ammann, Benninghoven and Marini, are developing systems able to use alternative fuels to reduce CO2 emissions.
  • EV tests to optimise their performance with power grids
    April 26, 2012
    Researchers at the US Department of Energy's National Renewable Energy Laboratory (NREL) have released a technical report that could help improve the performance of electric vehicles (EVs) and the efficiency of the electric utility grids that power them.The report documents a series of test procedures designed to enable engineers, designers and utilities to evaluate the performance of various EVs and hybrids to optimise how they connect with electric utility grids today - and "smart grids" in the future.
  • Kohler’s new hydrogen engine advance
    January 18, 2024
    Kohler Engines is unveiling its new Kohler Direct Injection Hydrogen (KDH) engine, an internal combustion engine that can run on hydrogen.
  • The challenge of integrating new mobility, a study
    February 6, 2020
    An ongoing study is benchmarking progress towards adapting roads to new mobility, explains Christophe Nicodème*