Skip to main content

New alternative to batteries for EVs

A new development looks set to offer an efficient alternative to lithium ion batteries for use in electric vehicles (EVs). At present the current generation of EVs feature lithium-ion batteries to store energy. However the performance of the lithium ion batteries has been criticised, particularly with regard to the recharge time required as this is considerably longer than the time needed to refuel a combustion engine-powered vehicle. While faster charging technologies are available for lithium ion batterie
November 15, 2013 Read time: 3 mins
A new development looks set to offer an efficient alternative to lithium ion batteries for use in electric vehicles (EVs). At present the current generation of EVs feature lithium-ion batteries to store energy. However the performance of the lithium ion batteries has been criticised, particularly with regard to the recharge time required as this is considerably longer than the time needed to refuel a combustion engine-powered vehicle. While faster charging technologies are available for lithium ion batteries, these reduce battery life considerably. The charging time has been identified as a major reason for the slow adoption rate of EVs around the world. However a team of engineers is working on a novel solution by developing a graphene supercapacitor that can store almost as much charge as a lithium ion battery but charges in just 16 seconds.

This new capacitor is being developed at the Gwangju Institute of Science and Technology in South Korea. The team’s high-performance supercapacitors use graphene and are said to store almost as much energy as a lithium-ion battery. In terms of practicality, they can charge and discharge in seconds, and maintain 98% of their initial value after 10,000 cycles.

The project is using a highly porous form of graphene that has a very large internal surface area. This material is produced by reducing graphene oxide particles with hydrazine in water agitated with ultrasound. The graphene powder is then packed into a coin-shaped cell, a pressure of 300kg/cm2 for five hours and dried at 140°C. The resulting graphene electrode is highly porous, which allows the electrode to accommodate much more electrolyte. And this determines the amount of charge the supercapacitor can hold. The team has measured the performance of the supercapacitor and it is said to store energy at a density of more than 64Wh/kg at a current density of 5A/gramme. That is almost comparable with lithium-ion batteries, which have an energy density of between 100 and 200Wh/kg.

The engineers say they can fully charge the supercapacitor in just 16 seconds and have repeated this some 10,000 times without a significant reduction in capacitance. This is significant as it also offers a practical alternative to the more limited working life of a lithium ion battery. The cost of the supercapacitor technology has not yet been revealed however.

Related Content

  • Pearl Harbor Memorial Bridge, an extradosed design, opens in Connecticut
    September 30, 2015
    The first extradosed designed bridge in the United States, the Pearl Harbor Memorial Bridge in New Haven, Connecticut, was opened to traffic on September 28.
  • China's Roads Convention focuses on sustainability
    February 9, 2012
    IRF joins with key Chinese transport authorities to lead the way in efforts to make sustainable rural mobility, transport and access a reality for millions throughout the world. Jointly organised by IRF and the China Highway and Transportation Society (CHTS), together with the Shandong Provincial Transportation Department, the landmark 2nd International Convention on Rural Roads, hosted in the beautiful city of Jinan, China, marked a major step forward in global efforts to mobilise resources and knowledge f
  • Highways: environmental problem or environmental enhancement?
    March 21, 2016
    Highways need not be a blight on the countryside that many people, urban planners included, believe they will always be. By Bram Miller, director, and Martin Broderick, environmental consultant, at Ramboll Environ While the world’s highway networks bring undoubted economic and social benefits, they are generally perceived to lead to negative environmental impacts. Some may consider this an unfair reputation, but it is difficult to argue that in the majority of cases both the construction and operation of
  • Efficient processing of RAP in the mix
    December 19, 2017
    There are important methods aimed at the reuse and recycling of reclaimed asphalt pavement (RAP) a number of problems have to be solved however, mainly concerning the elimination of moisture content and how best to heat the RAP without damaging the binder. When RAP is used in percentages of up to 30-40% of the final mix, heating can be carried out through direct contact with hot aggregates. On the other hand, in order to use higher RAP percentages, up to 100%, the plant has to be fitted with a specific h