Skip to main content

Concrete cancer cure found?

Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass. Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer. “Every
May 26, 2016 Read time: 2 mins
Researchers at the University of British Columbia (UBC) in Canada believe they may have discovered a cure for ‘concrete cancer’, which afflicts many concrete structures. The Canadian claims for a concrete cancer cure revolve around a novel method for producing concrete using discarded glass.

Researchers at UBC’s Okanagan campus were able to reduce the chemical reaction that previously caused glass-fed concrete to weaken, expand and crack. This reaction is widely referred to as concrete cancer.

“Every year, millions of tons of glass bypass recycling centres and end up in North American landfills,” said associate professor of engineering Shahria Alam. “Like many engineers, we are interested in making smarter building materials that can give the construction industry the resources they need without necessarily having to take new resources out of the ground.

“Researchers have been looking for a long time for ways to reliably make use of glass in concrete construction, and we believe that this research represents a significant advancement in that search.”

Concrete cancer occurs when the alkaline properties of cement paste react with silica properties that can occur in recycled concrete additives, such as glass. In this recent study, Alam and co-researcher Anant Parghi, found that by adding a water-based, synthetic rubber polymer, fly ash, and silica powder to the concrete mixture, they were able to effectively neutralise negative chemical reactions.

“By partially replacing cement with polymer, fly ash and glass powder, we were able to produce concrete that was more than 60% stronger than what was previously believed possible,” said Parghi. “Though further testing is needed to assess long-term stability, it now looks like we can replace up to 25% of the cement materials that had to be mined for cement production with glass.”

All of the glass used in the study was taken from the landfill in Kelowna, BC and was considered waste at the time it was retrieved. The concrete additives were donated from Kelowna-based company POLYRAP Engineered Concrete Solutions.

Alam and Parghi’s study was recently published in the journal Construction and Building Materials.

Related Content

  • Beyond business as usual: Addressing the energy and carbon performance of our road infrastructure
    October 5, 2021
    Following recent policy-setting decisions by authorities in Europe and North America to achieve net zero emissions economy-wide no later than 2050, IRF has invited contributions from notable industry innovators in preparation for the 18th IRF World Meeting & Exhibition. Jonathan Davis, co-founder and CCO at Uberbinder, shares his thoughts on the historic responsibility and opportunity for the road industry to enhance its energy and carbon performance
  • Innovative, efficient aggregate washing system
    February 22, 2012
    Cleaning the crushed and screened products can boost quality and revenue. Aggregate Processing Solutions has developed a novel washing system aimed at the quarrying sector. The APS-100AT has been developed after almost five years of research and development and is said to be an innovative multi-component material washing system, featuring a highly efficient, heavy duty linear multi-deck screen.
  • The environmental case for geosynthetics
    August 8, 2022
    Huesker, a global manufacturer of geosynthetics and technical textiles, explains how incorporating geosynthetic material can boost a project’s environmental credentials*.
  • Analysing intelligent speed adaptation benefits
    April 12, 2012
    Oliver Carsten, Professor of Transport Safety at the Institute for Transport Studies (ITS) at the University of Leeds, UK, discusses Intelligent Speed Adaptation, looking at its safety potential