Skip to main content

Fast, cost-effective road stabilisation

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares. The ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working
February 15, 2012 Read time: 3 mins
The ALLU Stabilisation System a Finnish invention, was used on an industrial area in Helsinki
Contractor 2655 Biomaa used ALLU for stabilising the foundation layers for an industrial area in the Finnish capital Helsinki

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares.

The 2180 ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working method for hardening and dynamic strengthening of soft soils as well as for improving the soil's deformation properties].

Lead contractor for the Helsinki job, Biomaa from Nurmijärvi, Finland, has many years of stabilisation experience. The sub-contractor at the job site was 2296 Skanska Infra.
"The combination of column stabilisation and mass stabilisation was the only way this area could be developed, as the soft clay can reach down to 18m on this area," explains development manager Ville Niutanen from Biomaa, who is also in charge of the project.

The material being treated was soft peat and clay which in some areas was very wet indeed (the top layer down to 3m was peat and after that the soft layer of clay started). The clay layer can be from 3-18m deep until the solid rock or moraine starts. The layer of clay was column stabilised and the peat layer was treated with mass stabilisation after the column stabilisation was done.

"The mass stabilisation done on top of column stabilisation ensures a surface that does not sink," Niutanen says.

The job started by removing stumps and roots, then a layer of fine sand was spread on top of the surface (approximately 150kg/m3) to improve the quality of the peat so that it stabilises better. On top of this a layer of crushed stone was placed to ensure that the column stabilisation machine moved over the location. The column stabilisation was carried out first through the clay layer to the rock or solid bottom. The columns end at the base of the peat layer, about 3m deep.
When the column stabilisation was completed the crushed stone layer was removed and the pre-mixing of the peat layer was started. In premixing, the fine sand was mixed with the peat, and after the peat was stabilised by feeding and mixing the binding agent evenly to the material.

The already stabilised layer was then covered with geotextile and about 100cm layer of crushed stone was placed on top as a preload embankment.

The binding agent used at the job site was cement. In column stabilisation the volume of binding agent was about 130kg/m3 and in mass stabilisation about 100kg/m3.

Depending on circumstances, in one day 800-1,000m3 was mass stabilised using one ALLU unit. The new ALLU PFM 10+10 pressure feeder was in use, and this can feed the binder as far as 200m from the trailer. Part of the time two ALLU PF 7 pressure feeders also worked at the site adding to the capacity.

"It was easy to bring the ALLU PFM to the job site and it saved a lot of time and money, because we did not have to build a road for it at the area where we needed to stabilise, says Niutanen.

For more information on companies in this article

Related Content

  • Italian highway link completed
    January 24, 2017
    A challenging road construction project is being carried out in Italy within a tight timeframe, with assistance from a new Marini asphalt plant. The project is for the Salerno-Reggio Calabria highway and the work has to be completed before the end of 2016. Local contractor Bulfaro is carryiing out the work to complete surfacing work to the Macrolotto 3.2; a 40km section of the highway between Laino Borgo and Campotenese. This section of the route is at an altitude of over 800m but the work was complicated b
  • Quarry operators improve on productivity
    February 13, 2012
    With capital expenditure plans being reduced, many quarry operators are using the funds available to improve on productivity with their existing equipment fleets. Claire Symes reports. The economic downturn has had a big impact on the aggregates production sector with many quarry operators looking to reduce costs and rationalise operations. The impact of this can be seen in the reduction of capital expenditure plans but the investments that are being made are focused on efficiency.
  • Safety upgrade for Canadian highway
    February 20, 2012
    New machines from Dynapac have played an important role in tackling a stretch of Canadian highway with safety issues. The machines have been used to meet experimental compaction standards specified by highway engineers, so as to withstand Canada's harsh winter conditions. Canadian contractors InterCite Construction and Pavex of St Felicien have used the new Dynapac machines for work on upgrading Route 175, one of Canada's most dangerous highways, located in the Province of Quebec. Route 175 is a 174km long
  • Peri raises its game with hydraulic cylinder for UP Rosett props
    February 3, 2015
    Peri is highlighting several of its premier products this year, including the company’s panel wall formwork Maximo, its Gridflex grid slab formwork and the Peri UP Rosett Flex props. Intermat also marks the introduction of Maximo into the French market. The product makes the best use of manpower when on-site manpower is at a premium. The one-sided tie installation by only one person reduces the time needed to set up the formwork. Ties are installed from one side without spacer tubes and there is reduced