Skip to main content

Fast, cost-effective road stabilisation

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares. The ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working
February 15, 2012 Read time: 3 mins
The ALLU Stabilisation System a Finnish invention, was used on an industrial area in Helsinki
Contractor 2655 Biomaa used ALLU for stabilising the foundation layers for an industrial area in the Finnish capital Helsinki

The Kivikko industrial area in Finland, which is owned by the City of Helsinki, has expanded gradually over the years and it has expanded again with the new stabilised area now about 3.5hectares.

The 2180 ALLU equipment and system was used to stabilise Kivikko for the first time in 2001, and the latest job started in June 2010 with the stabilisation work completed by mid-December 2010. [The ALLU Stabilisation System is a Finnish invention that provides a fast, cost-effective and environmental-friendly working method for hardening and dynamic strengthening of soft soils as well as for improving the soil's deformation properties].

Lead contractor for the Helsinki job, Biomaa from Nurmijärvi, Finland, has many years of stabilisation experience. The sub-contractor at the job site was 2296 Skanska Infra.
"The combination of column stabilisation and mass stabilisation was the only way this area could be developed, as the soft clay can reach down to 18m on this area," explains development manager Ville Niutanen from Biomaa, who is also in charge of the project.

The material being treated was soft peat and clay which in some areas was very wet indeed (the top layer down to 3m was peat and after that the soft layer of clay started). The clay layer can be from 3-18m deep until the solid rock or moraine starts. The layer of clay was column stabilised and the peat layer was treated with mass stabilisation after the column stabilisation was done.

"The mass stabilisation done on top of column stabilisation ensures a surface that does not sink," Niutanen says.

The job started by removing stumps and roots, then a layer of fine sand was spread on top of the surface (approximately 150kg/m3) to improve the quality of the peat so that it stabilises better. On top of this a layer of crushed stone was placed to ensure that the column stabilisation machine moved over the location. The column stabilisation was carried out first through the clay layer to the rock or solid bottom. The columns end at the base of the peat layer, about 3m deep.
When the column stabilisation was completed the crushed stone layer was removed and the pre-mixing of the peat layer was started. In premixing, the fine sand was mixed with the peat, and after the peat was stabilised by feeding and mixing the binding agent evenly to the material.

The already stabilised layer was then covered with geotextile and about 100cm layer of crushed stone was placed on top as a preload embankment.

The binding agent used at the job site was cement. In column stabilisation the volume of binding agent was about 130kg/m3 and in mass stabilisation about 100kg/m3.

Depending on circumstances, in one day 800-1,000m3 was mass stabilised using one ALLU unit. The new ALLU PFM 10+10 pressure feeder was in use, and this can feed the binder as far as 200m from the trailer. Part of the time two ALLU PF 7 pressure feeders also worked at the site adding to the capacity.

"It was easy to bring the ALLU PFM to the job site and it saved a lot of time and money, because we did not have to build a road for it at the area where we needed to stabilise, says Niutanen.

For more information on companies in this article

Related Content

  • Wirtgen’s 3800 CR rips it up in San Jose
    May 16, 2017
    In California, in-situ cold recycling with a Wirtgen 3800 CR recycler has proved to be the most economical solution. In the US’s Golden State – California – Wirtgen’s 708kW powerhouse the 3800 CR recycler resurfaced 160km of San José’s main traffic arteries in situ, on-the-spot. The 3800 CR worked with a Vögele VISION 5200-2i tracked paver in a rear-load process. With this method, the 3800 CR travels in reverse, removing the damaged asphalt layers in a down-cut process and transferring the recycled material
  • E-MAK introduces sand dryer innovation
    April 15, 2016
    Turkish firm E-MAK continues with its introduction of innovations for the asphalt production market with the development of its new Sandry. As the name suggests this piece of equipment is intended to dry sand before it enters the asphalt plant, helping to optimise throughput and also energy consumption, lowering production and running costs for the customer.
  • Special mixes produced for a race track in Indonesia
    March 4, 2022
    International motorcycle racing has returned to Indonesia with help from asphalt plants supplied by Lintec & Linnhoff after a 24-year hiatus
  • Rockster machines operating in Tanzania extraction operation
    May 14, 2018
    Rockster’s DUPLEX System is being used in an extraction operation in Tanzania. The PB Mining Company in Tanzania selected Rockster’s 2-in-1 machine for crushing highly abrasive rock. The extraction firm was formed in 2014 and specialises in the exploration of lead glance, named Galena, the natural mineral form of lead sulphide. This is the most important ore of lead and usually contains about 1–2% silver, a byproduct that far outweighs the main lead ore in revenue. Because of its low melting point, it is e