Skip to main content

PB designing infrastructure for connected vehicle project

Parsons Brinckerhoff (PB) has been selected to design and supervise deployment of technology infrastructure for a US Department of Transportation (US DoT) pilot programme to study the potential of operating connected vehicles on the streets and highways of Ann Arbor, Michigan. Called the Connected Vehicle Safety Pilot Model Deployment project, the $15 million research effort is being undertaken by the University of Michigan Transportation Research Institute (UMTRI) and its partners on behalf of the US DoT.
April 24, 2012 Read time: 2 mins
2693 Parsons Brinckerhoff (PB) has been selected to design and supervise deployment of technology infrastructure for a 2364 US Department of Transportation (US DoT) pilot programme to study the potential of operating connected vehicles on the streets and highways of Ann Arbor, Michigan.

Called the Connected Vehicle Safety Pilot Model Deployment project, the $15 million research effort is being undertaken by the 5186 University of Michigan Transportation Research Institute (UMTRI) and its partners on behalf of the US DoT. The programme will deploy connected vehicle technologies in Ann Arbor and data from the model deployment will be used to evaluate the potential for this technology to revolutionise automobile safety.

The advanced technology will be tested in a year-long study, which will involve the installation of wireless devices in up to 3,000 vehicles, to allow communication among the vehicles, and between the vehicles and the surrounding roadside equipment. During the deployment US DoT will evaluate the effectiveness of connected vehicle technology to prevent crashes in an everyday environment. Connected vehicle communication is based on Dedicated Short Range Communications (DSRC).

PB’s role will be to oversee  the infrastructure elements of the project, ensuring that all 29 roadside equipment installations are planned, engineered, procured, installed, integrated, and remain operational according to an extremely aggressive schedule.

Infrastructure will include roadside radio transmitter equipment at 21 signalised intersections, three curve locations, and five freeway sites, a robust communications backhaul network using both wireless and fibre, and facilities to process data and to showcase the system. Infrastructure also includes the replacement of signal controllers and specialised converters along two major corridors that will broadcast signal phase and timing data to vehicles via the DSRC network.

At the conclusion of the model deployment test, Parsons Brinckerhoff will assist the US DoT and UMTRI in any follow-up experiments and/or decommissioning of the roadside equipment.  The project is scheduled for completion in December 2013.

For more information on companies in this article

Related Content

  • Roads to Recovery after the pandemic
    January 11, 2021
    IRF president Bill Halkias shares the Federation’s view on post-Covid
  • Tunnel waterproofing solutions
    February 29, 2012
    Tunnels are the highest value assets on a highway, making their operation, safety and maintenance of paramount importance. Patrick Smith reports
  • Geneva has a strong partnership with Birmingham University in the UK
    March 28, 2014
    IRF Geneva's longstanding partnership with the University of Birmingham has been expanded to form one of the sector’s most comprehensive professional development programmes IRF Geneva offers a rich palette of educational and professional development opportunities and resources. Programmes range from scholarships for master degree studies to the regular organisation of targeted vocational training workshops. A full listing can be accessed via the ‘training & services’ section of the IRF Geneva website (www.i
  • Italy’s renaissance bridge
    July 21, 2020
    Italian consulting company Italferr created a digital twin for designing the new Genoa bridge and won accolades at Bentley Systems: Bentley Year in Infrastructure Awards