Skip to main content

PERI's tall order in Mexico

The Baluarte Bridge (Puente Baluarte), part of a major highway project, ranks among the most outstanding infrastructure projects ever constructed in Mexico.
February 14, 2012 Read time: 3 mins
The Puente Baluarte's two-complex-designed pylons are being constructed using PERI ACS self-climbing technology
The Baluarte Bridge (Puente Baluarte), part of a major highway project, ranks among the most outstanding infrastructure projects ever constructed in Mexico.

The 1,124m long cable-stayed bridge will span a 390m deep ravine when completed in 2012, and its dimensions make it the world's third highest bridge. With a main span of 520m, nine piers and two pylons support the 20m wide superstructure, being built in a mountainous region on the border between the states of Durango and Sinaloa in north-west Mexico. It is part of a new highway that will form the single fast connection between the Pacific coast and the interior, making driving safer than on the existing parallel single track, and halving the journey time between the towns of Durango und Mazatlán.

The ravine on the Baluarte River is the most challenging hurdle along the route, which also features several reinforced concrete beam bridges (eight over 90m high) and 63 tunnels.

298 PERI planned and supplied a cost-effective formwork and scaffolding concept for construction of the different bridge piers. The 917 ACS self-climbing formwork used for the pylons allows crane-independent climbing in all weather conditions, which accelerates progress.

At 169m, P5 is the highest pylon and the top of its opposite P6 ends 13m below this. The largest cross section at the foot of the pylon is 18m x 8.56m. In the carriageway centre it widens to about 31.3m, and the piers then taper upwards and are 8m x 4.1m at the top. The pylon legs are not only inclined but also feature different cross sections along the complete height.

For the construction of this complex geometry, PERI developed a self-climbing solution on the basis of its ACS system. The ACS V (variable) was used for the forward and reverse-inclined external walls. The platforms of this climbing scaffold can be continuously adjusted to match the angle of inclination, which means that horizontal working levels are always available.

The variable VARIO GT 24 girder wall formwork is being used on the climbing scaffold. The PERI concept permits the construction site team to quickly adapt the formwork to suit the requirements of each concreting section and thus accurately construct the pylons. At the same time, the proven PERI Fin-Ply formlining guarantees high quality surface finishes with which around 50 to 70 uses are possible.

Construction of the pylons is carried out using a total of 46 or 49 concreting sections with variable concreting heights of between 3.28m and 3.9m.

The foreland piers have been designed as double piers, and vary (according to the shape of the terrain) in height up to a maximum of 145m. They were also constructed using VARIO GT 24 girder wall formwork.

A majority of the surfaces could be formed with standard panel formwork while for the tight inner areas PERI planned project-specific elements. These were accurately adapted and pre-mounted to match geometrical and static requirements as well as being delivered on a just-in-time basis to the construction site.

The assembly of the 5.1m high elements with only four SRZ waler lines allows the required concreting speed of 2m/hour, and on the pier exteriors, CB 240 climbing brackets support the VARIO elements.

Cross members with a height of 4m connect the supports of the double piers, and TRIO panel formwork forms the side formwork, while MULTIFLEX slab formwork serves to shape the underside of the members. High load-bearing GT 24 formwork girders are used as the main and cross beams.

A PERI UP Rosett scaffold construction carries the member formwork during construction.

For more information on companies in this article

Related Content

  • Sangamo wins the winter battle with a Wirtgen Slipform Paver SP 15i
    January 19, 2016
    Winter was coming in the northern US state of Illinois and Sangamo Construction had to build 1.5km of bridge parapets just before the end of the construction season. Sangamo Construction was contracted to work on five bridges where some parapets needed to be 1m high x 48cm thick at the bottom, tapering to a width of just under 27cm at the top, and with a perpendicular rear wall. As much as 26m3 of concrete were processed just for the construction of the four 150m-long parapets on the twin bridges on Interst
  • Launch soon for the Sunderland Bridge’s deck across the Wear
    March 24, 2017
    The team constructing the New Wear Crossing near the English city of Sunderland is preparing for the final launch of the 300m bridge deck. In recent weeks, the legs of the 100m-tall centrepiece have been secured to the foundations within the riverbed and most of the rigging used to raise it into place has been removed. While the bridge deck was being painted, the bottoms of both pylon legs were filled with 175tonnes of concrete, The next major process will be to slowly pull the bridge deck out acr
  • Flexibility with Mobiscreen MSS 802(i) EVO
    August 8, 2022
    Kleeman says that its new Mobiscreen MSS 802(i) EVO offers users a mobile, efficient screening plant to meet changing challenges in different applications. It demonstrates how a high material flow can be guaranteed in natural stone and recycling applications.
  • Innovative new drainage solutions will help keep roads free from water
    October 2, 2014
    An array of new technologies will help optimise road drainage and minimise flooding risks - Mike Woof reports In the UK the specialist contractor Lanes Group has carried out extensive inspection work of the drainage systems for the M6 toll route around the city of Birmingham. A powerful zoom camera has been used to carry out the inspection work for Midland Expressway, which operates and maintains the 43km-long motorway, running from Coleshill to Cannock.