Skip to main content

Wacker Neuson rebar tiers at Queensferry

When the Queensferry Crossing over the Forth Estuary opens at the end of 2016, it will be the third landmark bridge to be built spanning this short stretch of water. This 2.7km structure is lying alongside the existing road bridge and the historic rail bridge and is the centrepiece of the upgrade to Scotland’s key cross-Forth transport corridor. Responsible for the construction is Forth Crossing Bridge Constructors – FCBC, a consortium of companies from Germany, Spain, the US and the UK. Construction
February 7, 2017 Read time: 2 mins
When the Queensferry Crossing over the Forth Estuary opens at the end of 2016, it will be the third landmark bridge to be built spanning this short stretch of water. This 2.7km structure is lying alongside the existing road bridge and the historic rail bridge and is the centrepiece of the upgrade to Scotland’s key cross-Forth transport corridor.

Responsible for the construction is Forth Crossing Bridge Constructors – FCBC, a consortium of companies from Germany, Spain, the US and the UK.

Construction work will take place 207m above sea level. Around 150,000tonnes of concrete will be poured and more than 37,000km of cabling will be used.

Also used will be four DF16 rebar tiers and 377,000 ties from 1651 Wacker Neuson. The DF16s tie “shear links” on rebar on the deck section of the bridge. Steel required for the final deck weighs 35,000tonnes - the equivalent weight of nearly 200 Boeing 747s.

“Thanks to the upright position of the DF16, work is now much more back-friendly,” explained John Rodgers, FCBC works manager. The mechanical device uses a proven twin-wire mechanism which ties up to 1,000 uniform and firm knots per hour.

Steelworkers are making 33,000 ties per section with the mechanical tier. The operator is independent of a battery and the necessary charging time. In addition, no scrap wire is produced which must be removed at the end of the work.

To compact the fresh concrete John and his team use 40 high-frequency internal vibrators of the IFRU series. “We use two different variants of the vibrator head size, 57mm and 38mm,” said Rodgers. They can be simply connected to the 1-phase power supply and are ready for operation.

Models in the IRFU series have an integrated frequency converter. No additional frequency converters are needed to operate this internal vibrator. Simply connect to a plug receptacle. Also in conjunction with a generator and with fluctuating input voltages IRFU is safe and reliable. Thanks to the complete potted electronic components, there is no danger of an electric shock.

For more information on companies in this article

Related Content

  • Wolffkran leads the pack
    December 10, 2024
    At present, the two WOLFF 7534.16 Clear cranes are drawing a lot of attention near Horb in Germany’s Neckar Valley
  • Ammann develops new tandem drum asphalt compactors
    March 16, 2016
    Developed by Ammann, the new ARX 90 and ARX 110 tandem rollers are available in both Tier 4Final/Stage IV variants for use in Europe and North America, as well as Tier 3 versions for use in lesser regulated markets. These high performance units are the first Ammann vibratory rollers to feature oscillation. This system cuts out around 90% of the vibrations to surroundings from conventional vibratory systems. The new rollers combine the oscillating, back-and-forth-movement of the drum with a constant static l
  • Electric asphalt compaction option
    July 20, 2023
    Several asphalt compactor makers now offer compact machines featuring electric drives
  • Lochkov bridge construction time 'cut'
    July 17, 2012
    As part of the R1 southern orbital motorway around the Czech capital, Prague, a joint venture is building a five-span, 461m long and approximately 65m high viaduct near the village of Lochkov, as a girder bridge construction. For the two steeply inclined twin piers, Doka has supplied an automatic climbing formwork solution that obviates the need for shoring and that will "cut more than 100 days from the construction period." Cast-in-place concrete construction of bridge piers with such a steep inclination