Skip to main content

Nuclear technology can provide structural assessments

Technology developed for the nuclear industry can provide structural assessments.
By MJ Woof March 7, 2024 Read time: 2 mins
An innovative technology from Estonian firm GScan can be used to assess the integrity of structures such as London’s troubled Hammersmith Bridge for example – image courtesy of © William Barton|Dreamstime.com


An innovative technology developed for the nuclear industry can be used to assess the structural conditions of tunnels and bridges. Deep-tech company GScan uses cosmic rays combined with AI/ML to provide precise assessments of the structural integrity and chemical composition of infrastructure, ensuring ongoing safety and longevity.  

Decay, cracks and corrosion can compromise the structural integrity of transport systems, risking public safety. A pilot project on a nuclear reactor scanning proved this innovative technology for use on a broad range of engineering applications.

The firm can deliver infrastructure assessments for assets like bridges and tunnels. The company will conclude a project with National Highways, scanning for steel components in a post-tensioned concrete bridge next month. 
The Estonian deep tech GScan uses  muon flux scanning and this technology has the capability to penetrate over 1m of concrete and imaging steel, allowing non-invasive assessments across various industries.

GScan uses naturally occurring cosmic rays known as muons to ‘reveal’ items that may be hidden within tens of metres of a structure. Around 10,000 muons/m2 pass harmlessly through individuals, buildings and structures every minute, changing direction and speed based on the chemical composition of the objects they encounter. GScan’s scanners detect changes to the flow of muons (muon flux); it then uses artificial intelligence (AI) to analyse this information, creating 3D models of the structure accurate to 1cm.

Muon flux scanning shows significant promise in industries where traditional assessment methods fall short due to extreme conditions or access limitations. “GScan’s technology isn’t just a tool for decommissioning plants; it can be used to optimise the ongoing maintenance of facilities in challenging or difficult-to-access environments. Our method allows for a detailed and non-invasive analysis of almost any structure, helping to identify degradation and structural weaknesses before they become critical,” added Andi Hektor.
 

Related Content

  • Tradecc launches PC Tunnelinject for sealing concrete cracks
    November 7, 2019
    Tradecc, a manufacture of concrete tunnel-ling sealing material, has launched PC Tunnelinject 2K 6822 LV, a very low viscous, fast reacting, two-component polyurethane injection resin.
  • Major Necaxa-Tihuatlan Highway project for Mexico
    October 1, 2014
    A new highway in Mexico is connecting Necaxa with Tihuatlan and the project features challenging terrain - Mauro Nogarin reports In Mexico a landmark highway project is now close to completion, having set a number of records for Latin America.
  • Amey chooses polystyrene blocks for Scottish tunnel infill
    June 25, 2018
    Amey recently completed an infill project to make safe a disused railway tunnel underneath the approach roads north of Scotland’s Forth Road Bridge. The 420m tunnel was part of the Dunfermline to North Queensferry railway line that provided a link to the ferry service until the opening of the Forth Bridge in 1890. The 4.3m-wide and 5.1m-high tunnel with vaulted roof and brick lining continued in use for freight until 1954. The tunnel runs underneath the A9000 and B981 on the northern approach to the Forth
  • Current technologies could eliminate 90 per cent of traffic accidents
    April 27, 2012
    Nearly every traffic accident caused by driver error – up to 90 per cent of all crashes – could be eliminated if existing intelligent transportation technologies were implemented in vehicles and on roads, say experts at IEEE, the world's largest technical professional association. These include electronics and computing technologies such as in-vehicle machine vision and sensors to detect drowsy drivers, lane departure warning systems, and vehicle-to-vehicle and vehicle-to-infrastructure communications for s