Skip to main content

Nuclear technology can provide structural assessments

Technology developed for the nuclear industry can provide structural assessments.
By MJ Woof March 7, 2024 Read time: 2 mins
An innovative technology from Estonian firm GScan can be used to assess the integrity of structures such as London’s troubled Hammersmith Bridge for example – image courtesy of © William Barton|Dreamstime.com


An innovative technology developed for the nuclear industry can be used to assess the structural conditions of tunnels and bridges. Deep-tech company GScan uses cosmic rays combined with AI/ML to provide precise assessments of the structural integrity and chemical composition of infrastructure, ensuring ongoing safety and longevity.  

Decay, cracks and corrosion can compromise the structural integrity of transport systems, risking public safety. A pilot project on a nuclear reactor scanning proved this innovative technology for use on a broad range of engineering applications.

The firm can deliver infrastructure assessments for assets like bridges and tunnels. The company will conclude a project with National Highways, scanning for steel components in a post-tensioned concrete bridge next month. 
The Estonian deep tech GScan uses  muon flux scanning and this technology has the capability to penetrate over 1m of concrete and imaging steel, allowing non-invasive assessments across various industries.

GScan uses naturally occurring cosmic rays known as muons to ‘reveal’ items that may be hidden within tens of metres of a structure. Around 10,000 muons/m2 pass harmlessly through individuals, buildings and structures every minute, changing direction and speed based on the chemical composition of the objects they encounter. GScan’s scanners detect changes to the flow of muons (muon flux); it then uses artificial intelligence (AI) to analyse this information, creating 3D models of the structure accurate to 1cm.

Muon flux scanning shows significant promise in industries where traditional assessment methods fall short due to extreme conditions or access limitations. “GScan’s technology isn’t just a tool for decommissioning plants; it can be used to optimise the ongoing maintenance of facilities in challenging or difficult-to-access environments. Our method allows for a detailed and non-invasive analysis of almost any structure, helping to identify degradation and structural weaknesses before they become critical,” added Andi Hektor.
 

Related Content

  • Huesker: the case for geosynthetics
    April 19, 2022
    Huesker, a global manufacturer of geosynthetics and technical textiles, explains how incorporating geosynthetic material can boost a project’s environmental credentials*.
  • Norway’s massive Rogfast Tunnel project
    December 11, 2018
    The world's longest and deepest road tunnel is underway in western Norway - Adrian Greeman reports
  • Weigh in motion and ANPR techology aid highway protection
    April 10, 2012
    Weigh-in-motion technology manufacturers have been involved in a number of significant highways tolling projects across the world in recent months, while others are looking to become involved in major new initiatives. Guy Woodford reports. The continuing global economic crisis did not prevent UK-based TDC Traffic Systems from recently securing the prized US$2.84million (€2.14million) contract to supply 20 high speed weigh-in-motion (WIM) systems for overweight pre-selection and enforcement in Saudi Arabia
  • Lightweight composite manhole covers
    March 14, 2012
    Composite rather than metal manhole covers are better for the UK road network, according to a recent technical paper by distinguished chartered engineer John Newton. In his paper Mr Newton, inventor of the composite manhole cover, claims tests have proved a new generation of innovative composite covers, developed and manufactured by Barrow-in-Furness-based Structural Science Composites (SSC), outperform ductile iron manhole covers, while also offering better value for money.