Skip to main content

KIT to study bridge vibration data

In Germany, the Karlsruhe Institute of Technology, KIT, will use acceleration sensors to gather vibration data from bridges to pinpoint structural degradation.
By David Arminas July 7, 2025 Read time: 3 mins
The concrete Rahmedetal Bridge near the town of Luedenscheid was closed to all traffic in December 2021 and eventually demolished in a controlled explosion in May 2023 (image courtesy Autobahn Gmbh)

Germany’s Karlsruhe Institute of Technology (KIT) will start a bridge monitoring study to determine if real-time structural vibration data can help prioritise maintenance.

According to Germany’s Federal Ministry of Transport, there are almost 40,000 bridges in the federal highway network, of which 86 percent are made of reinforced and prestressed concrete. Many of these bridges date from the 1960s and 1970s and were built for significantly lower traffic volumes.

Increases in traffic volumes – especially of heavy goods vehicles – has caused premature material aging. There could be up to 4,000 bridges in such a state, says the ministry. Among these prematurely aged structures are the Rahmedetal Bridge near Lüdenscheid and the Ringbahn Bridge in Berlin which have already had to be closed - resource-intensive replacement structures are unavoidable there.

At the beginning of March, it was discovered that a crack in a load-bearing component of the A100 Ringbahn Bridge – opened in 1963 as part of the 21km-long circular road - had widened significantly. The bridge was demolished in April. According to Autobahn, the government autobahn agency, the bridge had carried around 230,000 vehicles daily.

The old 453m-long steel beam and concrete Rahmedetal Bridge near the town of Luedenscheid was closed to all traffic in December 2021 and eventually demolished in a controlled explosion in May 2023. The replacement parallel twin-deck bridge is expected to be open in the first half of next year.

The study by KIT is being funded by the German Federal Environmental Foundation (DBU). "We need methods in bridge construction to mitigate a wave of general overhauls that is already threatening," said Alexander Bonde, secretary general of the DBU.

Bonde noted that extensive repairs requires a lot of concrete which in turn drives up emissions of the climate-damaging greenhouse gas carbon dioxide (CO₂). Global cement production alone accounts for around 6-8 percent of global CO₂ emissions. "If damage is repaired earlier, it relieves traffic, the environment and health," said Bonde.

The full extent of the damage within a bridge is often visible only after demolition. Automated damage detection through systems such as vibration data analysis, is one way to mitigate the need for late extensive repairs or even demolition.

Germany’s bridges already undergo a labour-intensive and time-consuming main inspection every six years, followed three years later by a simple inspection. Experienced engineers may examine the structures by doing a simple walking visual inspection, explained Alexander Stark, a professor of concrete structures within the Institute of Concrete Structures and Building Materials Technology at KIT. Sometimes, sections or parts are detached or forcibly removed to detect cavities, according to Stark who is project manager for the study. However, not all damage can be detected in this way.

Stark said that investigations are currently being done using pressure sensors, drone cameras, ultrasonic measurements and computer simulations and models. The problem is that the engineers get only a snapshot of only one part of a bridge. "We, therefore, urgently need practical automated real-time monitoring methods for bridges that can effectively report the location and extent of damage."

The KIT study will explore this real-time monitoring using acceleration sensors. "Every supporting structure has a characteristic vibration behaviour that is influenced by mass and stiffness,” said Stark. “If significant cracks occur in the concrete, the stiffness and thus also the vibration behaviour changes. This metrological evaluation of the entire bridge is intended to localise [pinpoint] crack formations and at the same time quantify them for the first time - even before they are even visible and a regular inspection of the bridge is due.”

Knowing the exact location of an issue means that rehabilitation measures can be carried out quickly, precisely and cost-effectively at an early stage. 
 

Related Content

  • IRF at OECD says global transport volume may double or even quadruple by 2050
    December 13, 2013
    The volume of global transport could double or even quadruple by 2050, according to a new study released by the International Transport Forum (ITF) at the Organisation of Economic Cooperation and Development (OECD). The ITF study says GDP growth, freight intensity of economic activity and demographic change are important drivers of the predicted huge transport volume growth. But the study titled ITF Transport Outlook 2013 – Funding Transport, a report containing long-running scenarios for global transport
  • Colombia bridge project faces delays after collapse
    February 6, 2018
    The recent collapse of the Chirajara bridge continues to be a centre for controversy in Colombia. The enforced closure of the Bogota-Villavicencio road link following the collapse has caused transport problems and the Colombian Government has now ordered that the route be reopened before it causes further economic problems. Temporary measures are being carried out to allow vehicles, and trucks in particular, to be able to bypass the affected stretch safely. The road company Coviandes has commissioned an
  • Putin orders doubling road-building in Russia by 2022
    November 21, 2014
    Russia looks set to accelerate its road building programme – Eugene Gerden writes The volume of road building in Russia should be doubled by 2022, according to a recent order of Russia’s president Vladimir Putin. He said, “We need a real breakthrough in road building during the next several years. These volumes should be doubled during the coming decade.”
  • Brisbane’s Airport: Innovative Management of One of the World’s Busiest Runways
    June 26, 2014
    When it comes to runways, there are few busier then Brisbane’s main runway. Servicing both domestic and international travel, with over 200,000 movements per year, operating without a curfew Brisbane’s main runway is the busiest in Australia. For maintenance, crews only have a limited period of time to determine the pavement condition, normally during the night, making the detection of pavement faults difficult. To resolve this issue, a new high speed pavement scanner was used to rapidly survey the pavem